3.658 \(\int \frac{\sqrt{d+e x} (f+g x)^2}{\sqrt{a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=200 \[ \frac{8 g \sqrt{d+e x} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}{15 c^2 d^2 e}-\frac{8 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g) \left (2 a e^2 g-c d (3 e f-d g)\right )}{15 c^3 d^3 e \sqrt{d+e x}}+\frac{2 (f+g x)^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{5 c d \sqrt{d+e x}} \]

[Out]

(-8*(c*d*f - a*e*g)*(2*a*e^2*g - c*d*(3*e*f - d*g))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*c^3*d^3*e
*Sqrt[d + e*x]) + (8*g*(c*d*f - a*e*g)*Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*c^2*d^2*
e) + (2*(f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(5*c*d*Sqrt[d + e*x])

________________________________________________________________________________________

Rubi [A]  time = 0.232959, antiderivative size = 200, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.065, Rules used = {870, 794, 648} \[ \frac{8 g \sqrt{d+e x} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}{15 c^2 d^2 e}-\frac{8 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g) \left (2 a e^2 g-c d (3 e f-d g)\right )}{15 c^3 d^3 e \sqrt{d+e x}}+\frac{2 (f+g x)^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{5 c d \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[d + e*x]*(f + g*x)^2)/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(-8*(c*d*f - a*e*g)*(2*a*e^2*g - c*d*(3*e*f - d*g))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*c^3*d^3*e
*Sqrt[d + e*x]) + (8*g*(c*d*f - a*e*g)*Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*c^2*d^2*
e) + (2*(f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(5*c*d*Sqrt[d + e*x])

Rule 870

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e*(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1))/(c*(m - n - 1)), x] - Dist[(n*(c*e*f + c*d*g
 - b*e*g))/(c*e*(m - n - 1)), Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c,
 d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Integ
erQ[p] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x} (f+g x)^2}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac{2 (f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{5 c d \sqrt{d+e x}}+\frac{\left (4 \left (c d e^2 f+c d^2 e g-e \left (c d^2+a e^2\right ) g\right )\right ) \int \frac{\sqrt{d+e x} (f+g x)}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{5 c d e^2}\\ &=\frac{8 g (c d f-a e g) \sqrt{d+e x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 c^2 d^2 e}+\frac{2 (f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{5 c d \sqrt{d+e x}}-\frac{\left (4 (c d f-a e g) \left (2 a e^2 g-c d (3 e f-d g)\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{15 c^2 d^2 e}\\ &=-\frac{8 (c d f-a e g) \left (2 a e^2 g-c d (3 e f-d g)\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 c^3 d^3 e \sqrt{d+e x}}+\frac{8 g (c d f-a e g) \sqrt{d+e x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 c^2 d^2 e}+\frac{2 (f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{5 c d \sqrt{d+e x}}\\ \end{align*}

Mathematica [A]  time = 0.0830496, size = 89, normalized size = 0.44 \[ \frac{2 \sqrt{(d+e x) (a e+c d x)} \left (8 a^2 e^2 g^2-4 a c d e g (5 f+g x)+c^2 d^2 \left (15 f^2+10 f g x+3 g^2 x^2\right )\right )}{15 c^3 d^3 \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[d + e*x]*(f + g*x)^2)/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)]*(8*a^2*e^2*g^2 - 4*a*c*d*e*g*(5*f + g*x) + c^2*d^2*(15*f^2 + 10*f*g*x + 3*g^2
*x^2)))/(15*c^3*d^3*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [A]  time = 0.051, size = 116, normalized size = 0.6 \begin{align*}{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( 3\,{g}^{2}{x}^{2}{c}^{2}{d}^{2}-4\,acde{g}^{2}x+10\,{c}^{2}{d}^{2}fgx+8\,{a}^{2}{e}^{2}{g}^{2}-20\,acdefg+15\,{f}^{2}{c}^{2}{d}^{2} \right ) }{15\,{c}^{3}{d}^{3}}\sqrt{ex+d}{\frac{1}{\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^2*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

2/15*(c*d*x+a*e)*(3*c^2*d^2*g^2*x^2-4*a*c*d*e*g^2*x+10*c^2*d^2*f*g*x+8*a^2*e^2*g^2-20*a*c*d*e*f*g+15*c^2*d^2*f
^2)*(e*x+d)^(1/2)/c^3/d^3/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.19517, size = 180, normalized size = 0.9 \begin{align*} \frac{2 \, \sqrt{c d x + a e} f^{2}}{c d} + \frac{4 \,{\left (c^{2} d^{2} x^{2} - a c d e x - 2 \, a^{2} e^{2}\right )} f g}{3 \, \sqrt{c d x + a e} c^{2} d^{2}} + \frac{2 \,{\left (3 \, c^{3} d^{3} x^{3} - a c^{2} d^{2} e x^{2} + 4 \, a^{2} c d e^{2} x + 8 \, a^{3} e^{3}\right )} g^{2}}{15 \, \sqrt{c d x + a e} c^{3} d^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

2*sqrt(c*d*x + a*e)*f^2/(c*d) + 4/3*(c^2*d^2*x^2 - a*c*d*e*x - 2*a^2*e^2)*f*g/(sqrt(c*d*x + a*e)*c^2*d^2) + 2/
15*(3*c^3*d^3*x^3 - a*c^2*d^2*e*x^2 + 4*a^2*c*d*e^2*x + 8*a^3*e^3)*g^2/(sqrt(c*d*x + a*e)*c^3*d^3)

________________________________________________________________________________________

Fricas [A]  time = 1.94361, size = 265, normalized size = 1.32 \begin{align*} \frac{2 \,{\left (3 \, c^{2} d^{2} g^{2} x^{2} + 15 \, c^{2} d^{2} f^{2} - 20 \, a c d e f g + 8 \, a^{2} e^{2} g^{2} + 2 \,{\left (5 \, c^{2} d^{2} f g - 2 \, a c d e g^{2}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d}}{15 \,{\left (c^{3} d^{3} e x + c^{3} d^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2/15*(3*c^2*d^2*g^2*x^2 + 15*c^2*d^2*f^2 - 20*a*c*d*e*f*g + 8*a^2*e^2*g^2 + 2*(5*c^2*d^2*f*g - 2*a*c*d*e*g^2)*
x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^3*d^3*e*x + c^3*d^4)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d + e x} \left (f + g x\right )^{2}}{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**2*(e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)*(f + g*x)**2/sqrt((d + e*x)*(a*e + c*d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x + d}{\left (g x + f\right )}^{2}}{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*x + d)*(g*x + f)^2/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x), x)